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Our contributions

▶ We present a framework, inspired by compositional tests (Hupkes
et al., 2019), for systematically evaluating generalization in logical
reasoning over natural language fragments (Pratt-Hartmann, 2004).

▶ Using syllogistic logic, one of the smallest logical fragment, we
evaluate neural assistance in symbolic proof construction and
identify significant limitations in generalization.

▶ We present a neuro-symbolic syllogistic prover that uses neural
guidance for proof construction, achieving efficient symbolic search
and robust, interpretable reasoning despite limited neural
generalization.
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Syllogistic logic

Well-formed formulas
Aab a ⊆ b All a are b
Eab a ∩ b = ∅ No a are b
Iab a ∩ b ̸= ∅ Some a are b
Oab a ̸⊆ b Some a are not b

▶ An A-chain (Aa− b) represents either a formula Aab or the
sequence Aac1,Ac1c2, . . . ,Acn−1cn,Acnb (for n ≥ 1)

▶ The negation of a formula F is denoted as F

Aab = Oab Iab = Eab
Oab = Aab Eab = Iab
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Knowledge Base

Definition
A knowledge base (KB) is a finite set of syllogistic formulas

Example: graph representation.

a

b

c d

O

A

A A

KB = {Aab,Abc,Abd ,Odb}

Remark: we generate KBs that are consistent (no contradictions) and
non-redundant, in the sense that each hypothesis admits only one
minimal proof.
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Derivation rules (Smiley, 1973)

Definition
A derivation ▽ is one of the following three types:

(i) Every F ∈ KB is a derivation from KB
(i)

F

(ii) The following four trees are derivations from KB. Where ▽′ and ▽′′

are derivations from KB
▽′

Aab
▽′′

Abc
(r1)

Aac

▽′

Aab
▽′′

Ebc
(r2)

Eac

▽′

Eba
(r3)

Eab

▽′

Aba
(r4)

Iab

(iii) Proof by contradiction: where ▽′ is a derivation from KB ∪ {H} and
▽′′ is a derivation from KB.

▽′

F

▽′′

F
(iii)

H
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Types of syllogisms

(1) {Aa− b,Ac − d ,Oad} ⊢ Obc
(2) {Aa− b} ⊢ Aab
(3) {Aa− b,Ac − d ,Aa− e,Ede} ⊢ Obc
(4) {Aa− b,Aa− c} ⊢ Ibc
(5) {Aa− b,Ac − d ,Ae − f , Iae,Edf } ⊢ Obc
(6) {Aa− b,Ac − d ,Ebd} ⊢ Eac
(7) {Aa− b,Ac − d , Iac} ⊢ Ibd

Type (1)
{Aa− b,Ac − d ,Oad} ⊢ Obc

a

b

c

d

OA A

Type (6)
{Aa− b,Ac − d ,Ebd} ⊢ Eac

a

b

c

d

A A

E

E

Type (5)
{Aa− b,Ac − d ,Ae − f , Iae,Edf } ⊢ Obc

a

b

c

d

e

f

I

OA A A

E
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Example of a syllogism

Given a consistent knowledge base KB along with a hypothesis H, select
the minimal set of premises to derive H from KB

a

b

c d

O

A

A A

KB = {Aab,Abc,Abd ,Odb}
H = Oda

Type (1) {Aab,Odb} ⊢ Oda
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Experiments (I): Neural models for premise selection

▶ Task: Given a consistent knowledge base KB along with a
hypothesis H. Train models that provide the necessary premises to
derive H, whenever an inference exists.

▶ Experimental setup:

- A single knowledge base.

- One-hot vector representations of syllogistic formulas.

- Neural models trained from scratch, including MLPs, RNNs, CNNs,
and encoder-only Transformers.
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Overall accuracy

Model Inf. Best Mean SD NNM

MLP
Val. 93.9 83.2 13.1 88.9
Inv. 97.1 94.2 2.5 –
All 96.6 93.5 3.1 –

RNN
Val. 95.9 93.5 1.3 95.3
Inv. 98.3 97.7 0.5 –
All 98.0 97.4 0.4 –

CNN
Val. 94.3 92.0 1.3 94.4
Inv. 97.3 96.7 0.3 –
All 96.9 96.4 0.2 –

TRA
Val. 96.6 93.6 2.9 95.7
Inv. 97.8 96.3 1.3 –
All 97.7 96.1 1.3 –
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Generalization tests for neural models

▶ Good generalization (the ability to perform on new data) is an
essential aspect of NLP neural models.

a

b

c

A

AA

a

b

c

d

A

A

A

Recursiveness Train Test
Compositionality Test Train

▶ We define the length of
inference as the total number of
A-formulas among the premises.

▶ For training data, we removed
inferences either with short or
long lengths.

▶ For test data, we evaluate the
eliminated inferences.
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Results

Compositionality Recursiveness

▶ Neural models generalization: The models cannot learn the
logic’s fully recursive and compositional nature.
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Results

▶ Additional compositional tests: When certain components of the
knowledge base (e.g., segments of A-chains or entire syllogism
types) are removed during training, models fail to recognize or
generalize to them at test time.

▶ Basic properties: The models generalize basic non-compositional
and non-recursive features of the syllogistic logic: Principle of
Contradiction (either H or H is invalid), non-empty denotations of
constants (if Aab is valid, then Iab is valid), as well as the symmetry
of formulas Iab and Eab.
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Experiments (II): Neural models for premise selection and
proof by contradiction

▶ Task: Given a consistent knowledge base KB along with a
hypothesis H. Train models that (1) provide the necessary premises
to derive H and (2) generate formulas that yield a contradiction,
enabling indirect (reductio ad absurdum) proofs.

▶ Experimental setup:

- Multiple knowledge bases.

- Textual representations of syllogistic formulas.

- Fine-tuning pre-trained language models, including a relatively small
encoder–decoder model (T5) and a substantially larger decoder-only
model (GPT).
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Generalization performance of GPT and T5
Task: Premise selection

Compositionality Recursiveness

Task: Proof By Contradiction
Compositionality Recursiveness
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Components of a hybrid model

KB

H

Prover ▽ of H from KB

P F

Assistant

Neural
Model (PS)

Neural
Model (PBC)

Input: A knowledge base KB (set of premises) and a hypothesis H.

Hybrid Model: If the prover asks for assistance, the neural model
(PS) provides P ⊂ KB s.t. P ⊢ H; and the neural model (PBC)
predicts a formula F s.t. KB ∪ {H} ⊢ F ∧ F .

Output: The prover computes a derivation ▽ (if exists) of H from
KB.
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Number of steps for the Symbolic and Hybrid models
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Conclusions

▶ Neural models generalization: Pre-trained language models
handle recursive reasoning but show weak compositional
generalization: training on complex inferences does not transfer to
recognizing their simpler components.

▶ Hybrid models comparison: Hybrid models reduce proof steps by
approximately three orders of magnitude compared to a purely
symbolic model.

▶ Robustness: Despite limitations in generalization and scale, LLMs
remain effective assistants to symbolic provers.
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Future work

▶ Extend the logic: Future work will investigate richer logical
fragments, including those studied by (Pratt-Hartmann, 2004) and
selected fragments of modal logic.

▶ Generalization analysis: Studying richer logical systems may reveal
new and qualitatively different generalization challenges.
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