

Testing the limits of logical reasoning in neural and hybrid models

Compositionality and Reasoning in AI and Cognitive Science
Workshop

Manuel Vargas Guzmán

University of Warsaw

m.vargas-guzman@uw.edu.pl jakub.szymanik@gmail.com

Jakub Szymanik

University of Trento

Maciej Malicki

University of Warsaw

mmalicki@mimuw.edu.pl

Warsaw, January 8, 2026

Our contributions

- ▶ We present a framework, inspired by compositional tests (Hupkes et al., 2019), for systematically evaluating generalization in logical reasoning over natural language fragments (Pratt-Hartmann, 2004).

Our contributions

- ▶ We present a framework, inspired by compositional tests (Hupkes et al., 2019), for systematically evaluating generalization in logical reasoning over natural language fragments (Pratt-Hartmann, 2004).
- ▶ Using syllogistic logic, one of the smallest logical fragment, we evaluate neural assistance in symbolic proof construction and identify significant limitations in generalization.

Our contributions

- ▶ We present a framework, inspired by compositional tests (Hupkes et al., 2019), for systematically evaluating generalization in logical reasoning over natural language fragments (Pratt-Hartmann, 2004).
- ▶ Using syllogistic logic, one of the smallest logical fragment, we evaluate neural assistance in symbolic proof construction and identify significant limitations in generalization.
- ▶ We present a neuro-symbolic syllogistic prover that uses neural guidance for proof construction, achieving efficient symbolic search and robust, interpretable reasoning despite limited neural generalization.

Syllogistic logic

Well-formed formulas

Aab	$a \subseteq b$	All a are b
Eab	$a \cap b = \emptyset$	No a are b
Iab	$a \cap b \neq \emptyset$	Some a are b
Oab	$a \not\subseteq b$	Some a are not b

Syllogistic logic

Well-formed formulas

Aab	$a \subseteq b$	All a are b
Eab	$a \cap b = \emptyset$	No a are b
Iab	$a \cap b \neq \emptyset$	Some a are b
Oab	$a \not\subseteq b$	Some a are not b

- ▶ An *A-chain* ($Aa - b$) represents either a formula Aab or the sequence $Aac_1, Ac_1c_2, \dots, Ac_{n-1}c_n, Ac_nb$ (for $n \geq 1$)

Syllogistic logic

Well-formed formulas

Aab	$a \subseteq b$	All a are b
Eab	$a \cap b = \emptyset$	No a are b
Iab	$a \cap b \neq \emptyset$	Some a are b
Oab	$a \not\subseteq b$	Some a are not b

- ▶ An *A-chain* ($Aa - b$) represents either a formula Aab or the sequence $Aac_1, Ac_1c_2, \dots, Ac_{n-1}c_n, Ac_nb$ (for $n \geq 1$)
- ▶ The **negation** of a formula F is denoted as \overline{F}

$$\begin{array}{c|c} \overline{Aab} = Oab & \overline{Iab} = Eab \\ \overline{Oab} = Aab & \overline{Eab} = Iab \end{array}$$

Knowledge Base

Definition

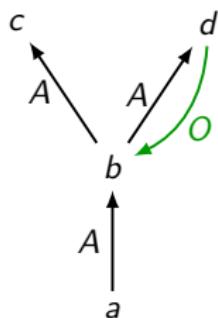
A knowledge base (\mathcal{KB}) is a finite set of syllogistic formulas

Knowledge Base

Definition

A knowledge base (\mathcal{KB}) is a finite set of syllogistic formulas

Example: **graph** representation.



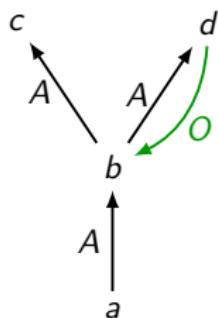
$$\mathcal{KB} = \{Aab, Abc, Abd, Odb\}$$

Knowledge Base

Definition

A knowledge base (\mathcal{KB}) is a finite set of syllogistic formulas

Example: **graph** representation.



$$\mathcal{KB} = \{Aab, Abc, Abd, Odb\}$$

Remark: we generate $\mathcal{KB}s$ that are **consistent** (no contradictions) and **non-redundant**, in the sense that each hypothesis admits only one minimal **proof**.

Derivation rules (Smiley, 1973)

Definition

A *derivation* ∇ is one of the following three types:

- (i) Every $F \in \mathcal{KB}$ is a derivation from \mathcal{KB}

$$\overline{F} \text{ (i)}$$

Derivation rules (Smiley, 1973)

Definition

A *derivation* ∇ is one of the following three types:

(i) Every $F \in \mathcal{KB}$ is a derivation from \mathcal{KB}

$$\overline{F} \text{ (i)}$$

(ii) The following four trees are derivations from \mathcal{KB} . Where ∇' and ∇'' are derivations from \mathcal{KB}

$$\frac{\nabla' \quad \nabla''}{\begin{array}{c} Aab \\ Aac \end{array}} \text{ (r1)}$$

$$\frac{\nabla' \quad \nabla''}{\begin{array}{c} Aab \\ Eac \end{array}} \text{ (r2)}$$

$$\frac{\nabla'}{\begin{array}{c} Eba \\ Eab \end{array}} \text{ (r3)}$$

$$\frac{\nabla'}{\begin{array}{c} Aba \\ lab \end{array}} \text{ (r4)}$$

Derivation rules (Smiley, 1973)

Definition

A *derivation* ∇ is one of the following three types:

(i) Every $F \in \mathcal{KB}$ is a derivation from \mathcal{KB}

$$\overline{F} \text{ (i)}$$

(ii) The following four trees are derivations from \mathcal{KB} . Where ∇' and ∇'' are derivations from \mathcal{KB}

$$\frac{\nabla' \quad \nabla''}{\begin{array}{c} Aab \\ Aac \end{array}} \text{ (r1)} \quad \frac{\nabla' \quad \nabla''}{\begin{array}{c} Aab \\ Eac \end{array}} \text{ (r2)} \quad \frac{\nabla' \quad \nabla''}{\begin{array}{c} Eba \\ Eab \end{array}} \text{ (r3)} \quad \frac{\nabla'}{\begin{array}{c} Aba \\ lab \end{array}} \text{ (r4)}$$

(iii) *Proof by contradiction*: where ∇' is a derivation from $\mathcal{KB} \cup \{\overline{H}\}$ and ∇'' is a derivation from \mathcal{KB} .

$$\frac{\nabla' \quad \nabla''}{\begin{array}{c} F \\ \overline{F} \\ H \end{array}} \text{ (iii)}$$

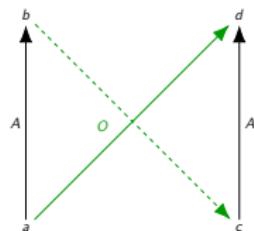
Types of syllogisms

- (1) $\{Aa - b, Ac - d, Oad\} \vdash Obc$
- (2) $\{Aa - b\} \vdash Aab$
- (3) $\{Aa - b, Ac - d, Aa - e, Ede\} \vdash Obc$
- (4) $\{Aa - b, Aa - c\} \vdash Ibc$
- (5) $\{Aa - b, Ac - d, Ae - f, Iae, Edf\} \vdash Obc$
- (6) $\{Aa - b, Ac - d, Ebd\} \vdash Eac$
- (7) $\{Aa - b, Ac - d, Iac\} \vdash Ibd$

Types of syllogisms

- (1) $\{Aa - b, Ac - d, Oad\} \vdash Obc$
- (2) $\{Aa - b\} \vdash Aab$
- (3) $\{Aa - b, Ac - d, Aa - e, Ede\} \vdash Obc$
- (4) $\{Aa - b, Aa - c\} \vdash Ibc$
- (5) $\{Aa - b, Ac - d, Ae - f, Iae, Edf\} \vdash Obc$
- (6) $\{Aa - b, Ac - d, Ebd\} \vdash Eac$
- (7) $\{Aa - b, Ac - d, Iac\} \vdash Ibd$

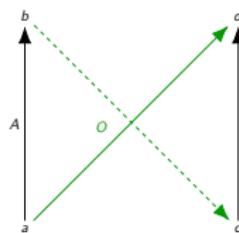
Type (1)
 $\{Aa - b, Ac - d, Oad\} \vdash Obc$



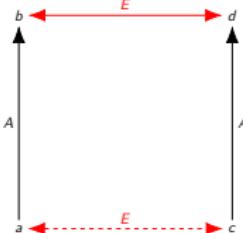
Types of syllogisms

- (1) $\{Aa - b, Ac - d, Oad\} \vdash Obc$
- (2) $\{Aa - b\} \vdash Aab$
- (3) $\{Aa - b, Ac - d, Aa - e, Ede\} \vdash Obc$
- (4) $\{Aa - b, Aa - c\} \vdash Ibc$
- (5) $\{Aa - b, Ac - d, Ae - f, Iae, Edf\} \vdash Obc$
- (6) $\{Aa - b, Ac - d, Ebd\} \vdash Eac$
- (7) $\{Aa - b, Ac - d, Iac\} \vdash Ibd$

Type (1)
 $\{Aa - b, Ac - d, Oad\} \vdash Obc$

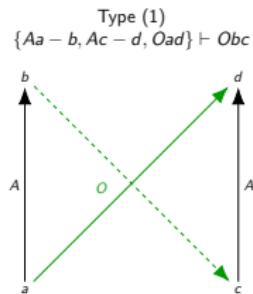
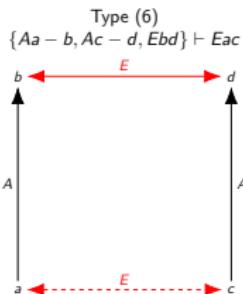
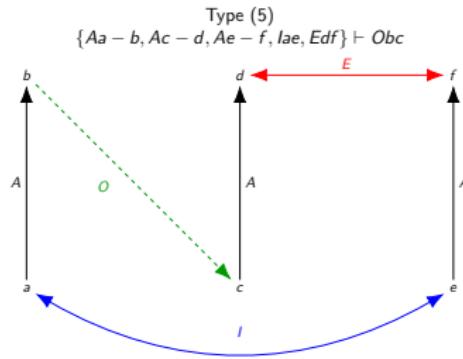


Type (6)
 $\{Aa - b, Ac - d, Ebd\} \vdash Eac$



Types of syllogisms

- (1) $\{Aa - b, Ac - d, Oad\} \vdash Obc$
- (2) $\{Aa - b\} \vdash Aab$
- (3) $\{Aa - b, Ac - d, Aa - e, Ede\} \vdash Obc$
- (4) $\{Aa - b, Aa - c\} \vdash Ibc$
- (5) $\{Aa - b, Ac - d, Ae - f, Iae, Edf\} \vdash Obc$
- (6) $\{Aa - b, Ac - d, Ebd\} \vdash Eac$
- (7) $\{Aa - b, Ac - d, Iac\} \vdash Ibd$

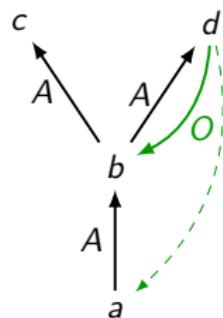


Example of a syllogism

Given a consistent knowledge base \mathcal{KB} along with a hypothesis H , select the minimal set of premises to derive H from \mathcal{KB}

Example of a syllogism

Given a consistent knowledge base \mathcal{KB} along with a hypothesis H , select the minimal set of premises to derive H from \mathcal{KB}

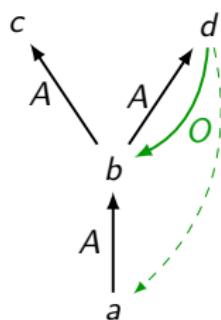


$$\mathcal{KB} = \{Aab, Abc, Abd, Odb\}$$

$$H = Oda$$

Example of a syllogism

Given a consistent knowledge base \mathcal{KB} along with a hypothesis H , select the minimal set of premises to derive H from \mathcal{KB}



Type (1) $\{Aab, Odb\} \vdash Oda$

$$\mathcal{KB} = \{Aab, Abc, Abd, Odb\}$$

$$H = Oda$$

Experiments (I): Neural models for premise selection

- ▶ **Task:** Given a consistent knowledge base KB along with a hypothesis H . Train **models** that provide the necessary premises to **derive** H , whenever an inference exists.

Experiments (I): Neural models for premise selection

- ▶ **Task:** Given a consistent knowledge base \mathcal{KB} along with a hypothesis H . Train **models** that provide the necessary premises to **derive** H , whenever an inference exists.
- ▶ **Experimental setup:**

Experiments (I): Neural models for premise selection

- ▶ **Task:** Given a consistent knowledge base \mathcal{KB} along with a hypothesis H . Train **models** that provide the necessary premises to **derive** H , whenever an inference exists.
- ▶ **Experimental setup:**
 - A single knowledge base.

Experiments (I): Neural models for premise selection

- ▶ **Task:** Given a consistent knowledge base \mathcal{KB} along with a hypothesis H . Train **models** that provide the necessary premises to **derive** H , whenever an inference exists.
- ▶ **Experimental setup:**
 - A single knowledge base.
 - One-hot vector representations of syllogistic formulas.

Experiments (I): Neural models for premise selection

- ▶ **Task:** Given a consistent knowledge base \mathcal{KB} along with a hypothesis H . Train **models** that provide the necessary premises to **derive** H , whenever an inference exists.
- ▶ **Experimental setup:**
 - A single knowledge base.
 - One-hot vector representations of syllogistic formulas.
 - Neural models trained from scratch, including MLPs, RNNs, CNNs, and encoder-only Transformers.

Overall accuracy

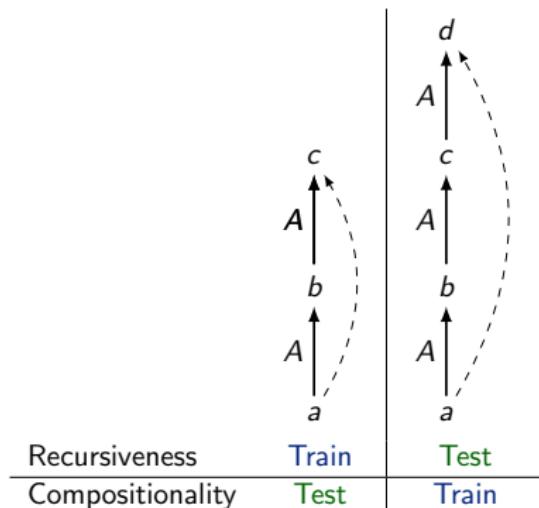
Model	Inf.	Best	Mean	SD	NNM
MLP	Val.	93.9	83.2	13.1	88.9
	Inv.	97.1	94.2	2.5	—
	All	96.6	93.5	3.1	—
RNN	Val.	95.9	93.5	1.3	95.3
	Inv.	98.3	97.7	0.5	—
	All	98.0	97.4	0.4	—
CNN	Val.	94.3	92.0	1.3	94.4
	Inv.	97.3	96.7	0.3	—
	All	96.9	96.4	0.2	—
TRA	Val.	96.6	93.6	2.9	95.7
	Inv.	97.8	96.3	1.3	—
	All	97.7	96.1	1.3	—

Generalization tests for neural models

- ▶ Good generalization (the ability to perform on new data) is an essential aspect of NLP neural models.

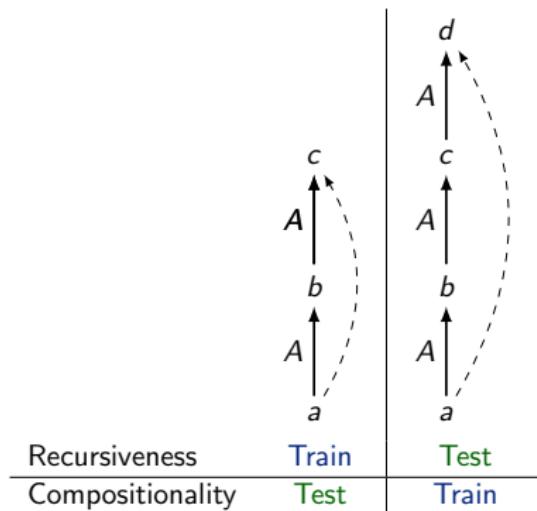
Generalization tests for neural models

- Good generalization (the ability to perform on new data) is an essential aspect of NLP neural models.



Generalization tests for neural models

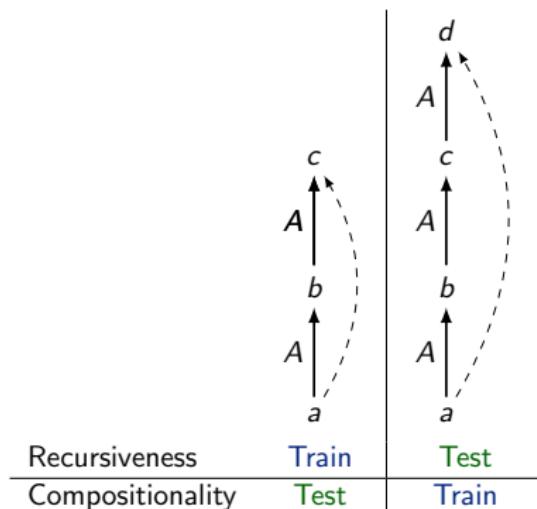
- Good generalization (the ability to perform on new data) is an essential aspect of NLP neural models.



- We define the *length* of inference as the total number of A -formulas among the premises.

Generalization tests for neural models

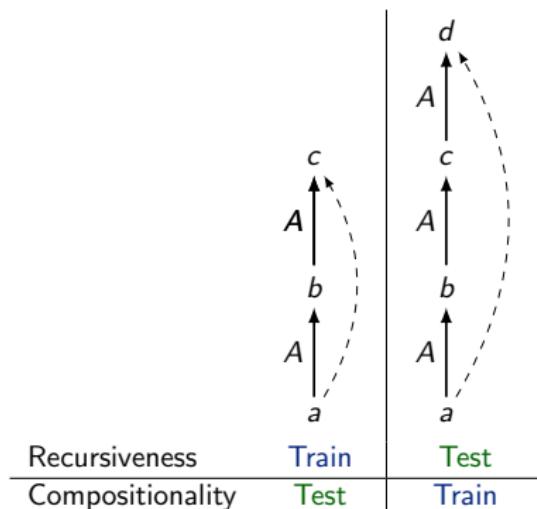
- ▶ Good generalization (the ability to perform on new data) is an essential aspect of NLP neural models.



- ▶ We define the *length* of inference as the total number of A -formulas among the premises.
- ▶ For **training data**, we removed inferences either with short or long lengths.

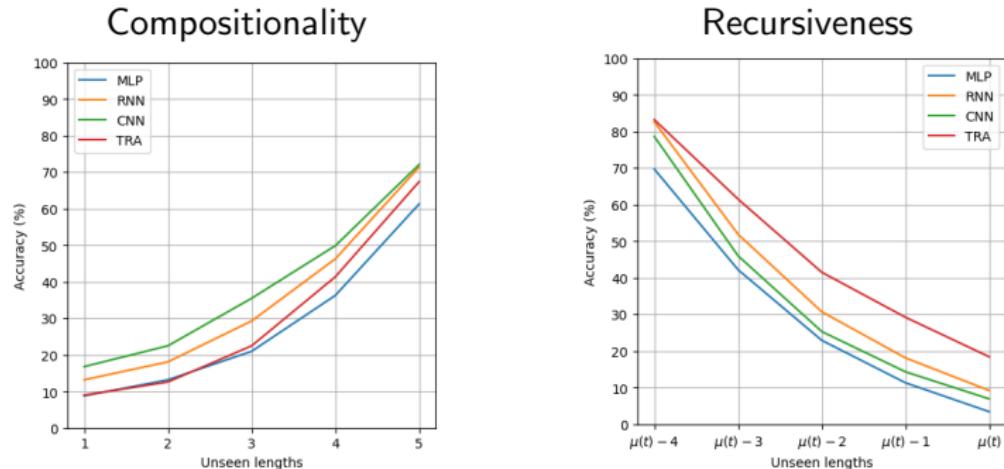
Generalization tests for neural models

- ▶ Good generalization (the ability to perform on new data) is an essential aspect of NLP neural models.



- ▶ We define the *length* of inference as the total number of A -formulas among the premises.
- ▶ For **training data**, we removed inferences either with short or long lengths.
- ▶ For **test data**, we evaluate the eliminated inferences.

Results



- ▶ **Neural models generalization:** The models cannot learn the logic's fully recursive and compositional nature.

Results

- ▶ **Additional compositional tests:** When certain components of the knowledge base (e.g., segments of A-chains or entire syllogism types) are removed during training, models fail to recognize or generalize to them at test time.

Results

- ▶ **Additional compositional tests:** When certain components of the knowledge base (e.g., segments of A-chains or entire syllogism types) are removed during training, models fail to recognize or generalize to them at test time.
- ▶ **Basic properties:** The models generalize basic non-compositional and non-recursive features of the syllogistic logic: Principle of Contradiction (either H or \overline{H} is invalid), non-empty denotations of constants (if Aab is valid, then lab is valid), as well as the symmetry of formulas lab and Eab .

Experiments (II): Neural models for premise selection and proof by contradiction

- ▶ **Task:** Given a consistent knowledge base KB along with a hypothesis H . Train **models** that (1) provide the necessary premises to **derive** H and (2) generate formulas that yield a contradiction, enabling indirect (reductio ad absurdum) proofs.

Experiments (II): Neural models for premise selection and proof by contradiction

- ▶ **Task:** Given a consistent knowledge base \mathcal{KB} along with a hypothesis H . Train **models** that (1) provide the necessary premises to **derive** H and (2) generate formulas that yield a contradiction, enabling indirect (reductio ad absurdum) proofs.
- ▶ **Experimental setup:**

Experiments (II): Neural models for premise selection and proof by contradiction

- ▶ **Task:** Given a consistent knowledge base \mathcal{KB} along with a hypothesis H . Train **models** that (1) provide the necessary premises to **derive** H and (2) generate formulas that yield a contradiction, enabling indirect (reductio ad absurdum) proofs.
- ▶ **Experimental setup:**
 - Multiple knowledge bases.

Experiments (II): Neural models for premise selection and proof by contradiction

- ▶ **Task:** Given a consistent knowledge base KB along with a hypothesis H . Train **models** that (1) provide the necessary premises to **derive** H and (2) generate formulas that yield a contradiction, enabling indirect (reductio ad absurdum) proofs.
- ▶ **Experimental setup:**
 - Multiple knowledge bases.
 - Textual representations of syllogistic formulas.

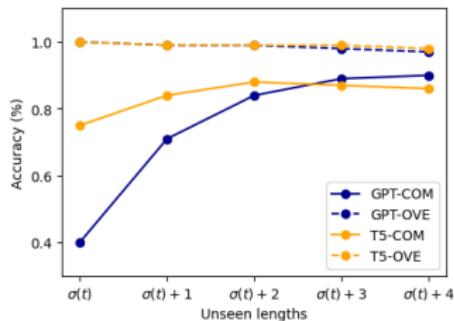
Experiments (II): Neural models for premise selection and proof by contradiction

- ▶ **Task:** Given a consistent knowledge base KB along with a hypothesis H . Train **models** that (1) provide the necessary premises to **derive** H and (2) generate formulas that yield a contradiction, enabling indirect (reductio ad absurdum) proofs.
- ▶ **Experimental setup:**
 - Multiple knowledge bases.
 - Textual representations of syllogistic formulas.
 - Fine-tuning pre-trained language models, including a relatively small encoder-decoder model (T5) and a substantially larger decoder-only model (GPT).

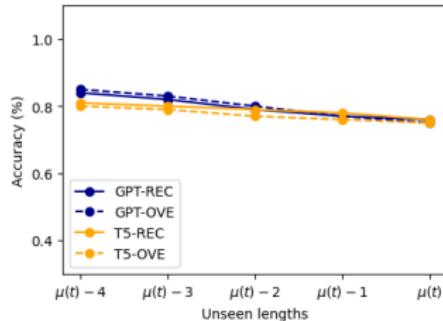
Generalization performance of GPT and T5

Task: Premise selection

Compositionality

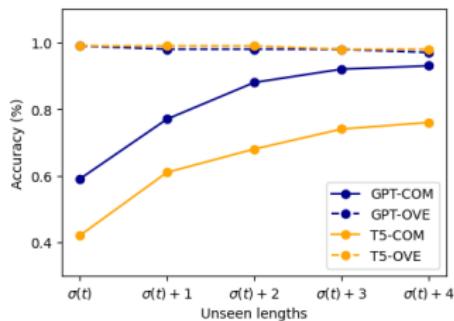


Recursiveness

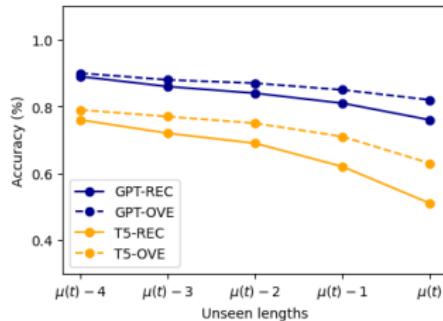


Task: Proof By Contradiction

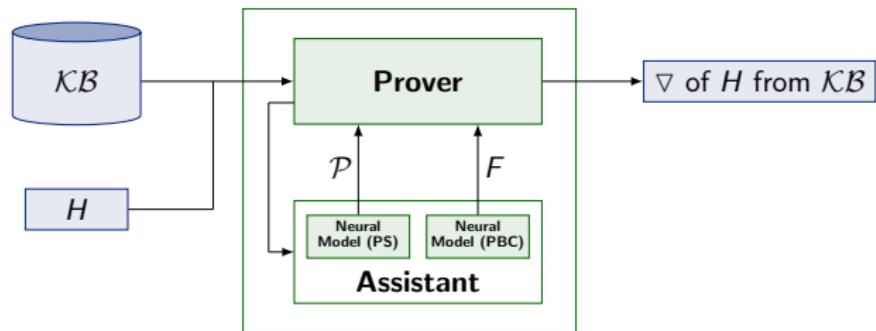
Compositionality



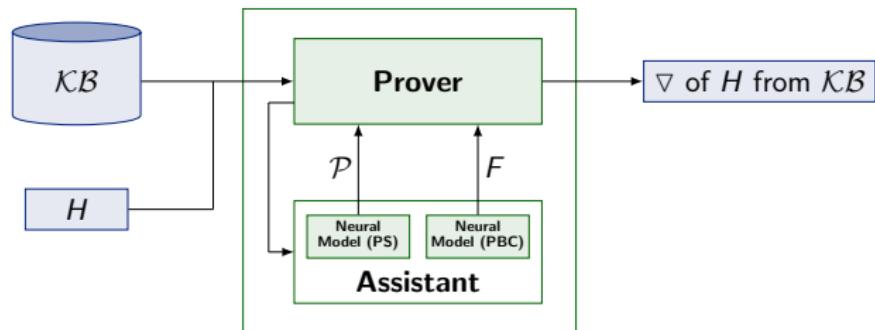
Recursiveness



Components of a hybrid model

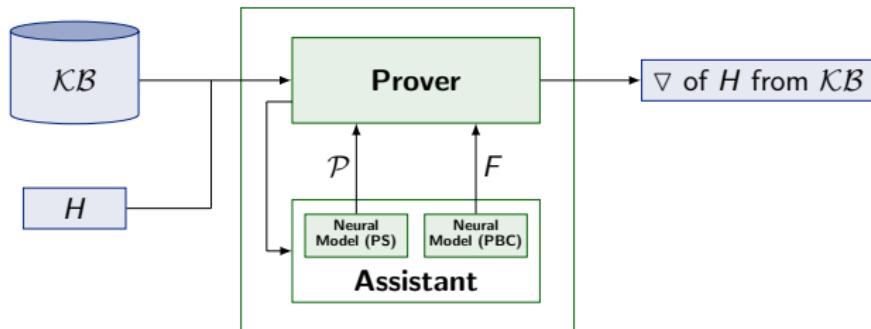


Components of a hybrid model



Input: A knowledge base \mathcal{KB} (set of premises) and a hypothesis H .

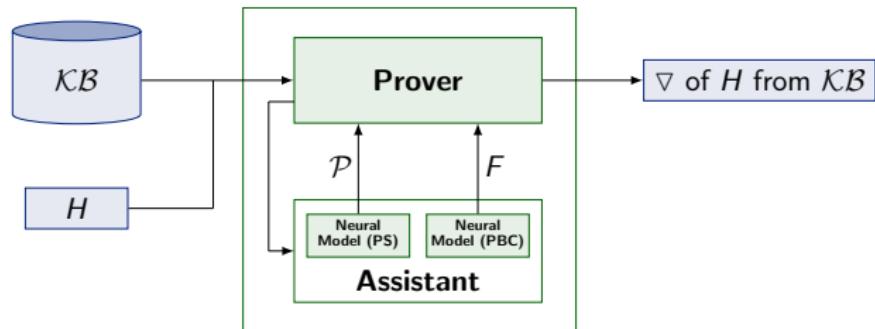
Components of a hybrid model



Input: A knowledge base \mathcal{KB} (set of premises) and a hypothesis H .

Hybrid Model: If the prover asks for assistance, the neural model (PS) provides $\mathcal{P} \subset \mathcal{KB}$ s.t. $\mathcal{P} \vdash H$; and the neural model (PBC) predicts a formula F s.t. $\mathcal{KB} \cup \{\overline{H}\} \vdash F \wedge \overline{F}$.

Components of a hybrid model

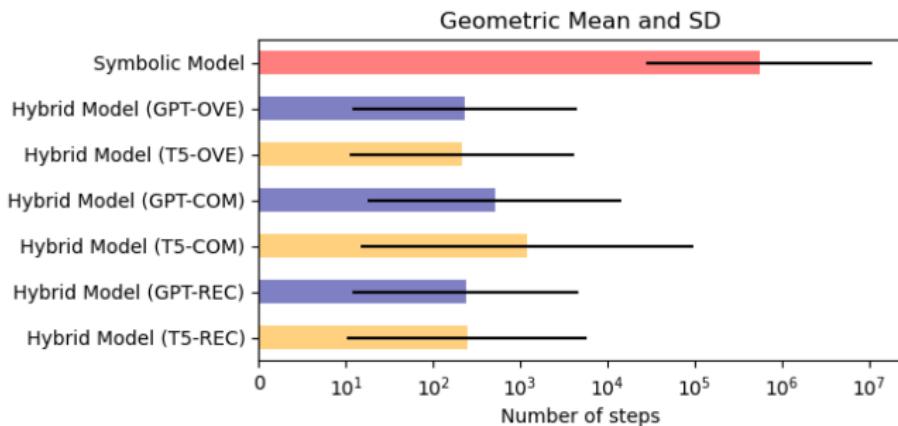


Input: A knowledge base \mathcal{KB} (set of premises) and a hypothesis H .

Hybrid Model: If the prover asks for assistance, the neural model (PS) provides $\mathcal{P} \subset \mathcal{KB}$ s.t. $\mathcal{P} \vdash H$; and the neural model (PBC) predicts a formula F s.t. $\mathcal{KB} \cup \{\overline{H}\} \vdash F \wedge \overline{F}$.

Output: The prover computes a derivation ∇ (if exists) of H from \mathcal{KB} .

Number of steps for the Symbolic and Hybrid models



Conclusions

- ▶ **Neural models generalization:** Pre-trained language models handle recursive reasoning but show weak compositional generalization: training on complex inferences does not transfer to recognizing their simpler components.

Conclusions

- ▶ **Neural models generalization:** Pre-trained language models handle recursive reasoning but show weak compositional generalization: training on complex inferences does not transfer to recognizing their simpler components.
- ▶ **Hybrid models comparison:** Hybrid models reduce proof steps by approximately three orders of magnitude compared to a purely symbolic model.

Conclusions

- ▶ **Neural models generalization:** Pre-trained language models handle recursive reasoning but show weak compositional generalization: training on complex inferences does not transfer to recognizing their simpler components.
- ▶ **Hybrid models comparison:** Hybrid models reduce proof steps by approximately three orders of magnitude compared to a purely symbolic model.
- ▶ **Robustness:** Despite limitations in generalization and scale, LLMs remain effective assistants to symbolic provers.

Future work

- ▶ **Extend the logic:** Future work will investigate richer logical fragments, including those studied by (Pratt-Hartmann, 2004) and selected fragments of modal logic.

Future work

- ▶ **Extend the logic:** Future work will investigate richer logical fragments, including those studied by (Pratt-Hartmann, 2004) and selected fragments of modal logic.
- ▶ **Generalization analysis:** Studying richer logical systems may reveal new and qualitatively different generalization challenges.

References I

- Hupkes, D., Dankers, V., Mul, M., & Bruni, E. (2019). The compositionality of neural networks: Integrating symbolism and connectionism. *CoRR, abs/1908.08351*.
<http://arxiv.org/abs/1908.08351>
- Pratt-Hartmann, I. (2004). Fragments of language. *Journal of Logic, Language and Information*, 13(2), 207–223.
<https://doi.org/10.1023/b:jlli.0000024735.97006.5a>
- Smiley, T. J. (1973). What is a syllogism? *Journal of Philosophical Logic*, 2(1), 136–154. <https://doi.org/10.1007/bf02115614>