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Our contributions

» \We present a framework, inspired by compositional tests (Hupkes
et al., 2019), for systematically evaluating generalization in logical
reasoning over natural language fragments (Pratt-Hartmann, 2004).

» Using syllogistic logic, one of the smallest logical fragment, we
evaluate neural assistance in symbolic proof construction and
identify significant limitations in generalization.

» We present a neuro-symbolic syllogistic prover that uses neural
guidance for proof construction, achieving efficient symbolic search
and robust, interpretable reasoning despite limited neural
generalization.
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Syllogistic logic

Well-formed formulas
Aab | aC b All a are b
Eab | anb=1( | No aare b
lab | anb#( | Some aare b
Oab | aZ b Some a are not b

» An A-chain (Aa — b) represents either a formula Aab or the
sequence Aacy, Acicy, ..., ACph—1Cny Acyb (for n > 1)
» The negation of a formula F is denoted as F

Aab = Oab | lab = Eab
Oab = Aab | Eab = lab
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Knowledge Base

Definition
A knowledge base (ICB) is a finite set of syllogistic formulas

Example: graph representation.

B
j

a

KB = {Aab, Abc, Abd, Odb}

Remark: we generate K3s that are consistent (no contradictions) and
non-redundant, in the sense that each hypothesis admits only one
minimal proof.
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Derivation rules (Smiley, 1973)

Definition
A derivation V is one of the following three types:
(i) Every F € KB is a derivation from KB

F (i)

(ii) The following four trees are derivations from KB. Where Vv’ and v”
are derivations from KB

v/ v// v/ v// v/ v/
Aab Abc 1) Aab Ebc ) Eba 3) Aba ()
Aac Eac Eab lab

(iii) Proof by contradiction: where V' is a derivation from KB U {H} and
v’ is a derivation from KB.

v/ v

£ _Fw
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(2) {Aa— b} + Aab
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Example of a syllogism

Given a consistent knowledge base KB along with a hypothesis H, select
the minimal set of premises to derive H from K5

A

d
AT K Type (1) {Aab, Odb} I Oda
K

a

KB = {Aab, Abc, Abd, Odb}
H = Oda
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Experiments (I): Neural models for premise selection

» Task: Given a consistent knowledge base KB along with a
hypothesis H. Train models that provide the necessary premises to
derive H, whenever an inference exists.

» Experimental setup:
- A single knowledge base.
- One-hot vector representations of syllogistic formulas.

- Neural models trained from scratch, including MLPs, RNNs, CNNs,
and encoder-only Transformers.



Overall accuracy

Model | Inf. | Best | Mean | SD | NNM
Val. | 939 | 83.2 | 13.1 | 88.9
MLP Inv. | 97.1 | 94.2 2.5 -
All | 96.6 | 93.5 | 3.1 -
Val. | 959 | 935 1.3 95.3
RNN Inv. | 98.3 | 97.7 0.5 -
All | 98.0 | 97.4 | 0.4 -
Val. | 94.3 | 92.0 1.3 94.4
CNN Inv. | 97.3 | 96.7 0.3 -
All | 96.9 | 96.4 | 0.2 -
Val. | 96.6 | 93.6 2.9 95.7
TRA Inv. | 97.8 | 96.3 1.3 -
All | 97.7 | 96.1 | 1.3 -
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Generalization tests for neural models

» Good generalization (the ability to perform on new data) is an
essential aspect of NLP neural models.
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Al » We define the length of
c ¢ inference as the total number of
X \'. A-formulas among the premises.
AI \\ A ;‘ » For training data, we removed
b E b inferences either with short or
A\ /,’ A /,’l long lengths.
/ // » For test data, we evaluate the
) a_ ? eliminated inferences.
Recursiveness Train Test
Compositionality Test Train




Results

Compositionality Recursiveness
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» Neural models generalization: The models cannot learn the
logic's fully recursive and compositional nature.
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Results

» Additional compositional tests: When certain components of the
knowledge base (e.g., segments of A-chains or entire syllogism
types) are removed during training, models fail to recognize or
generalize to them at test time.

» Basic properties: The models generalize basic non-compositional
and non-recursive features of the syllogistic logic: Principle of
Contradiction (either H or H is invalid), non-empty denotations of
constants (if Aab is valid, then /ab is valid), as well as the symmetry
of formulas lab and Eab.
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Experiments (II): Neural models for premise selection and
proof by contradiction

» Task: Given a consistent knowledge base KB along with a
hypothesis H. Train models that (1) provide the necessary premises
to derive H and (2) generate formulas that yield a contradiction,
enabling indirect (reductio ad absurdum) proofs.

» Experimental setup:
- Multiple knowledge bases.
- Textual representations of syllogistic formulas.

- Fine-tuning pre-trained language models, including a relatively small
encoder—decoder model (T5) and a substantially larger decoder-only
model (GPT).



Generalization performance of GPT and T5

Task: Premise selection
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Components of a hybrid model

Prover
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P

F

Neural Neural
Model (PS) | |Model (PBC)

Assistant

V of H from KB

Input: A knowledge base KB (set of premises) and a hypothesis H.

Hybrid Model: If the prover asks for assistance, the neural model
(PS) provides P C KB s.t. P+ H; and the neural model (PBC)

predicts a formula F s.t. KBU{H}+ FAF.

Output: The prover computes a derivation V (if exists) of H from

KB.



Number of steps for the Symbolic and Hybrid models

Geometric Mean and SD

Symbolic Model

Hybrid Model (GPT-OVE)
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Hybrid Model (T5-COM)
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Conclusions

» Neural models generalization: Pre-trained language models
handle recursive reasoning but show weak compositional
generalization: training on complex inferences does not transfer to
recognizing their simpler components.

» Hybrid models comparison: Hybrid models reduce proof steps by
approximately three orders of magnitude compared to a purely
symbolic model.

» Robustness: Despite limitations in generalization and scale, LLMs
remain effective assistants to symbolic provers.
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Future work

» Extend the logic: Future work will investigate richer logical
fragments, including those studied by (Pratt-Hartmann, 2004) and
selected fragments of modal logic.

» Generalization analysis: Studying richer logical systems may reveal
new and qualitatively different generalization challenges.
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